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We reconstruct the density matrices and Wigner functions
for various quantum states of motion of a harmonically bound
9Be+ ion. We apply coherent displacements of different ampli-
tudes and phases to the input state and measure the number
state populations. Using novel reconstruction schemes we in-
dependently determine both the density matrix in the number
state basis and the Wigner function. These reconstructions
are sensitive indicators of decoherence in the system.

PACS numbers: 03.65Bz, 42.50.Vk, 32.80.Qk

In quantum mechanics, once the density matrix of
a system is determined, all knowable information is at
hand. All the elusive quantum properties, like superpo-
sitions and decoherence are reflected in it. Although it
is well established that the wave function or density ma-
trix of a single quantum system cannot be determined in
general, multiple measurements on an ensemble of identi-
cally prepared quantum systems can reveal their density
matrix.

Early work on determination of the quantum state in
such an ensemble was reviewed by Royer [1]. In quan-
tum optics, numerous reconstruction schemes have been
proposed, based on the measurement of probability dis-
tributions in different representations [2]. More recently,
proposals for determining the motional state of a trapped
atom have been published [3–6], partially inspired by the
analogy between cavity QED and a trapped atom inter-
acting with laser fields [7–9].

Few experiments have succeeded in determining the
density matrices or Wigner functions of quantum sys-
tems. Angular momentum density matrices were mea-
sured in collisionally produced hydrogen [10], the Wigner
function and density matrix of a mode of light was ex-
perimentally mapped by optical homodyne tomography
[11,12], and the Wigner function of the vibrational de-
gree of freedom of a diatomic molecule was reconstructed
[13]. In this letter we present the theory and experimen-
tal demonstration of two novel schemes that allow us to
reconstruct both the density matrix in the number state
basis and the Wigner function of the motional state of a
single trapped atom. A unique feature of our experiment
is that we are able to prepare a variety of nonclassical
input states [9] which can, for example, exhibit negative
values of the Wigner function. To our knowledge these
are the first experimental reconstructions revealing a neg-
ative Wigner function in position-momentum space.

In order to measure the complete state of motion, we
controllably displace the input state to several different

locations in phase space. Specifically, a coherent displace-
ment [9,14] U(−α) = U†(α) = exp(α∗a − αa†) (−α is
used for convenience below) is first applied to the in-
put motional state. Here a and a† are the lowering and
raising operators of the harmonically bound atom (fre-
quency ωx), while α is the complex parameter character-
izing the coherent amplitude and phase. We then apply
radiation to the atom for a time t, which induces a reso-
nant exchange between states | ↓〉|k〉 and | ↑〉|k + 1〉 in a
Jaynes-Cummings-type interaction [7–9]. Here | ↓〉 and
| ↑〉 denote two selected internal states, and |k〉 is the
motional eigenstate with energy h̄ωx(k + 1/2). For each
α and time t the population P↓(t, α) of the | ↓〉 level is
then measured by monitoring the fluorescence produced
in driving a resonant dipole cycling transition [9]. The
internal state at t = 0 is always prepared to be | ↓〉, so
the signal averaged over many measurements is [15]

P↓(t, α) =
1

2

{
1 +

∞∑
k=0

Qk(α) cos (2Ωk,k+1t)e
−γkt

}
, (1)

(where Ωk,k+1 are the Rabi frequencies and γk their ex-
perimentally determined decay constants). Because the
Rabi frequency between | ↓〉|k〉 and | ↑〉|k + 1〉 depends
on k [9], the populations Qk(α) of the motional eigen-
states after the displacement can be extracted [7–9,16].
We repeat this scheme for several magnitudes and phases
of the coherent displacement and finally reconstruct the
density matrix and the Wigner function from the mea-
sured displaced populations Qk(α).

To reconstruct the density matrix ρ in the number
state base, we use the relation

Qk(α) = 〈k|U†(α)ρU(α)|k〉. (2)

Note that Q0(α)/π is the Q-quasi-probability distribu-
tion [4]. Rewriting (2) we get

Qk(α) =
1

k!
〈0|akU†(α)ρU(α)(a†)k|0〉 (3)

=
1

k!
〈α|(a− α)kρ(a† − α∗)k|α〉

=
e−|α|

2 |α|2k
k!

∞∑
n,m=0

k∑
j,j′=0

(α∗)n−jαm−j
′

n!m!
×

(−1)−j−j
′ (k
j

) (
k
j′
)√

(m+ j)!(n+ j′)!ρn+j′,m+j .

To separate the contributions of different matrix-
elements we may displace the state along a circle,

αp = |α| exp[i(π/N)p], (4)
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where p ε {−N, ..., N − 1}. The number of angles 2N
on that circle determines the maximum number state
nmax = N − 1 included in the reconstruction. This al-
lows us to perform a discrete Fourier transform of Eq. (3)
evaluated at the values αp, and we obtain the matrix
equations

Q
(l)
k ≡

1

2N

N−1∑
p=−N

Qk(αp)e
−il(π/N)p

=
∞∑

n=max(0,−l)
γ

(l)
knρn,n+l (5)

with matrix elements

γ
(l)
kn =

e−|α|
2 |α|2k
k!

min(k,n)∑
j′=0

min(k,l+n)∑
j=0

|α|2(n−j−j′)+l ×

(−1)−j−j
′ (k
j

) (
k
j′
) √

(l + n)!n!

(l + n− j)!(n− j′)! (6)

for every diagonal ρn,n+l of the density matrix. To keep
the matrix dimension finite, a cutoff for the maximum n
in Eq. (5) is introduced, based on the magnitude of the
input state. For an unknown input state an upper bound
on n may be extracted from the populations Qk(α). If
these are negligible for k’s higher than a certain kmax and
all displacements α, they are negligible in the input state
as well, and it is convenient to truncate Eq. (5) at nmax =
kmax. The resulting matrix equation is overcomplete for
some l, but the diagonals ρn,n+l can still be reconstructed
by a general linear least-squares method [17].

The Wigner function for every point α in the complex
plane can be determined by the simple sum [18,16],

W (α) =
2

π

∞∑
n=0

(−1)nQn(α). (7)

In practice, the sum is carried out only to a finite nmax,
as described above. In contrast to our density matrix
method it provides a direct method to obtain the Wigner
function at the point α in phase space, without the need
to measure at other values of α. This also distinguishes
the method from preceding experiments that determined
the Wigner function by inversion of integral equations
(tomography) [11,13].

In our experiment, the trapped atom is a single 9Be+

ion, stored in a rf Paul trap [19] with a pseudopotential
oscillation frequency of ωx/2π ≈ 11.2 MHz [20]. The
ion is laser-cooled using sideband cooling with stimulated
Raman transitions [21] between the 2S1/2 (F = 2, mF =

−2) and 2S1/2 (F = 1, mF = −1) hyperfine ground
states, which are denoted by | ↓〉 and | ↑〉 respectively and
are separated by approximately 1.25 GHz.

The preparation of coherent and number (Fock) states
of motion starting from the ground state is described in

[9]. The coherent displacement we need for the recon-
struction mapping is provided by a spatially uniform clas-
sical driving field [14,19] at the trap oscillation frequency.
The rf oscillators that create and displace the state are
phase-locked to control their relative phase. Different dis-
placements are realized by varying the amplitude and the
phase of the displacement oscillator. For every displace-
ment α, we record P↓(t, α). Qn(α) can be found from the
measured traces with a singular-value decomposition [9].
To determine the amplitude |α| of each displacement, the
same driving field is applied to the |n = 0〉 ground state
and the resulting collapse and revival trace is fitted to
that of a coherent state [9].

The accuracy of the reconstruction is limited by the un-
certainty in the applied displacements, the errors in the
determination of the displaced populations, and decoher-
ence during the measurement. The value of the Wigner
function is found by a sum with simple error propagation
rules. The density matrix is constructed by a linear least
squares method and it is straightforward to calculate a
covariance matrix [17]. As the size of the input state
increases, decoherence and the relative accuracy of the
displacements become more critical, thereby increasing
their uncertainties.

In Fig. 1, we show the reconstruction of both the num-
ber state density matrix (a) and Wigner function (b) of
an approximate |n = 1〉 number state. The large negative
part of the Wigner function around the origin highlights
the fact that the |n = 1〉 number state is nonclassical.

In contrast, the state closest to a classical state of mo-
tion in a harmonic oscillator is a coherent state. As one
example, we have excited and reconstructed a coherent
state with amplitude |β| ≈ 0.67. The experimental am-
plitude and phase of the number state density matrix are
depicted in Fig. 2. The off-diagonal elements are gener-
ally smaller for the experiment than we would expect
from the theory of a pure coherent state. In part this is
due to decoherence during the measurement, so the re-
construction shows a mixed state character rather than a
pure coherent state signature. This view is further sup-
ported by the fact that farther off-diagonal elements seem
to decrease faster than direct neighbors of the diagonal.
The reconstructed Wigner function of a coherent state
with amplitude |β| ≈ 1.5 is shown in Fig. 3.

Next we created a coherent superposition of |n = 0〉
and |n = 2〉 number states. This state is ideally suited to
demonstrate the sensitivity of the reconstruction to co-
herences. The only nonzero off- diagonal elements should
be ρ02 and ρ20, with a magnitude of |ρ02| = |ρ20| =√
ρ00ρ22 ≈ 0.5 for a superposition with about equal prob-

ability of being measured in the |n = 0〉 or |n = 2〉 state.
In the reconstruction shown in Fig. 4 the populations
ρ00 and ρ22 are somewhat smaller, due to imperfections
in the preparation, but the coherence has the expected
value of |ρ20| = |ρ02| ≈

√
ρ00ρ22.

In contrast to the above, a thermal state should ex-
hibit no coherences. In the experiment such a state was
prepared by (only) Doppler-cooling the ion [9]. The re-
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construction of the resulting thermal state with mean
occupation number n ≈ 1.3 is depicted in Fig. 5. As ex-
pected, there are no coherences, and the diagonal, which
gives the number state occupation, shows an exponential
behavior within the experimental errors.

In summary, we have created number, thermal, coher-
ent, and number-state superposition states of motion of
a trapped atom and determined both density matrices
in the number-state basis and Wigner functions of these
states. The methods are suitable for arbitrary quan-
tum states of motion, including mesoscopic superposi-
tion states (Schrödinger’s cat states) [22] and could be a
useful tool to study decoherence in these states. These
methods could also be implemented in cavity-QED ex-
periments to determine the states of an electromagnetic
field (using available techniques) [23], or in neutral atom
traps where dipole forces could provide the drive for a
coherent displacement [9,22]. Another straightforward
extension of this work in ion traps would be to perform
tomography on entangled motional and internal states
of two or more trapped ions, by combining the motional
state reconstruction with Ramsey-type and correlation
experiments.

Note in proof: After submission of this work we have
learned that Mlynek et al. have measured the Wigner
function of atoms in an interferometer [24], and that Opa-
trny et al. [25] propose a very similar method to recon-
struct the density matrix of a light field in the number
state basis.
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FIG. 1. (a) Reconstructed number-state density matrix
amplitudes ρnm for an approximate |n = 1〉 number state.
The coherent reconstruction displacement amplitude was
|α| = 1.15(3). The number of relative phases N = 4 in Eq. (4),
so nmax = 3. (b) Surface and contour plots of the Wigner
function W (α) of the |n = 1〉 number state. The plotted
points are the result of fitting a linear interpolation between
the actual data points to a 0.1 by 0.1 grid. The octagonal
shape is an artifact of the eight measured phases per radius.
The white contour represents W (α) = 0. The negative values
around the origin highlight the nonclassical character of this
state.

FIG. 2. Experimental amplitudes ρnm and phases Θ(ρnm)
of the number-state density matrix elements of a |β| ≈ 0.67
coherent state. The state was displaced by |α| = 0.92, for
N = 4 in Eq. (4).

FIG. 3. Surface and contour plots of the reconstructed
Wigner function of a coherent state. The plotted points are
the result of fitting a linear interpolation between the actual
data points to a 0.13 by 0.13 grid. The approximately Gaus-
sian minimum uncertainty wavepacket is centered around
a coherent amplitude of about 1.5 from the origin. The
halfwidth at half maximum is about 0.6, in accordance with
the minimum uncertainty halfwidth of

√
1/2 ln(2) ≈ 0.59.

To suppress artifacts in the Wigner function summation, we
have averaged over nmax = 5 and nmax = 6 truncations, as
suggested by M. Collett.

FIG. 4. Reconstructed density matrix amplitudes of an ap-
proximate 1/

√
2(|n = 0〉 − i|n = 2〉) state. The state was dis-

placed by |α| = 0.79 for N = 4 in Eq. (4). The amplitudes of
the coherences indicate that the reconstructed density matrix
is close to that of a pure state.

FIG. 5. Reconstructed density matrix of a n ≈ 1.3 thermal
state. This state was displaced by |α| = 0.78, for N = 4 in
Eq. (4). As one would expect for a thermal state, no coher-
ences are present within the experimental uncertainties and
the populations drop exponentially for higher n.
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Leibfried et al., Fig.  1 (a)
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Leibfried et al., Fig.  2
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Leibfried et al., Fig.  4
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Leibfried et al., Fig.  5
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